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ABSTRACT

A high resobtt ion finite element method for t he solut ion of problems involving high

_pe_! compressible flows is pre_nted. The method uses the concepts of flux-corrected

transport and is presented in a form which is suitable for implementation on completely

unstructured triangular or tetrahedral meshes. Transient and steady state examples

are solved to illustrate the performance of the algorithm.
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INTRODUCTION

Over the past few years, there has been an ongoing interest in the application

of unstructured grid finite element methods to the solution of problems of high speed

compressible flow. In this area. the authors [18-20] have proposed a two-step explicit

implementation of a second order Taylor-Galerkin procedure [16.17] and have used this

approach to solve successfidly a variety of inviscid and viscous problems. The addition

of artificial viscosity is required to stabilize this solution procedure when it is applied

to the analysis of problems involving strong discontinuities, and this has the effect of

spreading flow discontinuities over several computational cells.

Solution methods _ upon high resolution _cbeme,_ [1-6] give sharper definition

of flow dit_tmtinuiti_ and are supposedly more robust. In two and tht_ dinmmfions.

these methods are _.tmrtBy implemented by using operator splitting and q_a_ying

< =: _'7--_--: -° _ in _ ¢mmtiMN _ tqmmt_: TIw _ dmmm

immt_mr. _. fit_ _ ia _ m tlm m mmm,. m tl_ tt_ of

om be used diredty on mmrttettn'od grids is Zakm_'s [7] __ tlt'n-
_iom at the t-D tlttx_ t_ (FCI')ideu ofBoris_I Booit[$-t0].
This method employs a high-orcler scheme together with • iow-ord_ ta:hem_ and at-
tempts to combine these in such a way that the high-or¢_ solution is mind in _h

low-order scheme should produce monotonic results for the problem to be wived. Er-

lebaelter [11] and Parrott and Christie [12] slmm_ how gc'r ideas could be intt_,preted

in the finite element context for • single governing equation and implemented on tri-

ang_dar meshes. Our contribution is the extetmiom of the technique to deal with the

solution of a system of equations and the formulation of a scheme with high temporal

accuracy, which is wall-suited for the analysis of traasient problems. The numerical ex-

amples presented to demonstrate the performance of the algorithm involve the solution

of both steady and transient flows of inviscid and viscous fluids.

THE EQUATIONS OF COMPRESSIBLE FLOW

The governing equations of compressible flow can be written in the conservation
form

ov or, or;
+ 0,-7= o " (I)

where the summation convention has been employed and

{'}U = pu,

pe { o}F. = + #,, F;'= k " ('2)
uj(pe + p) u_crO + Ox_

q



• -4 "_fl_'_ _'t_'-¸_" _ _ = :

ttere p. p. t. T and k denote the density, pressure, specific total energy, temperature

and thermal conductivity of the fluid respectively and u, i_ the component of the fluid

velocity in the direction z, of a ('artesian c_,rdinate _ystem. "Ihe ,'quation _et is

,omplete,l by the addit ion of t he st ate equal ions

1 1
p = !'. - lq_it - ._uj% i 1" = c,i_ - -u,%i" .. "2 "

_'hich arc valid for a perfect ga.,,, where ". i,_ the ratio of the specific h,_ats and c,. is the

specific heat at ,onstant volume. The components of the viscous stress tensor 0",j are
given by

and it is assumed that A and t_ are related by

X= 2v
3 15)

THE FLOW SOLVER: FEM-FCT

As stated above, high resolution, monotonicity pre_rvmg schemes must b,,devel-

oped in order to be able to simulate the strong nonlinear disco.tinnities present in the

flows under consideration. Although the pertinent tit,-rature about.Is with high reso-

lution schemes [1-6]. only Zalesak's generalization [71 of the 1-D F('2 ._chemes of Boris

arid Book [_-10] can be considered a truly multidimensional hieh resolution scheme. We

romark here that the us_ of unstructured grids requires s,ch trul.v multidimensional

schemes, as the lack of liues or planes in the mesh inhibits the use of operator splitting.

Erlebacher [11 i. and Parrot and Christie [12] first analyzed F('T _chemos in the

context of finite element methods. We develop their ideas further to includt, the con-

sistent mass. which yields high temporal accuracy, and to systems ,,t equations.

The Concept of Flux-Corrected Transport {FCTL

We consider a set of conservation laws given by a system of part ial different ial equa-

tions of the form given in eqn.(1), and assume that the advective fluxes F" = F_(U)

play a dominant role over the viscous fluxes F" = F"(I'). For flows described by

eqn.(1), discontinuities in the variables may ari_ (e.g. shocks or contact discontinu-

ities). Any numerical scheme of order higher than on,,, will produce overshoots or ripples

at such discontinuities (the so-called "Godunov theorem" [15]). Very- often, particularly
for mildly nonlinear systems, these overshoots can be tolerated, llowever, for the class

of problems studied here. overshoots will eventua!ly lead to numerical instability', and

wiil therefore have to be suppressed.
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The ideabehind FCT is to combine a high-order scheme with a low-order scheme

in such a way that in regions where the variables under consideration vary smoothly

(so that a Taylor expansion makes sense) the high-order scheme is employed, whereas

in those regions where the variables vary abruptly the schemes are combined, in a

conservative manner, in an attempt to ensure a monotonic solution.

The temporal discretization of eqn.(1) yields

t "'+! = U" + AU. (6)

where AU is the increment of the unknowns obtained for a given scheme at time

t = t =. Our aim is to obtain a AU of as high an order as ptamible without introducing

overshoots. To this end, we re-write eqn.(6) as:

U"+t = 17" + AU _ + (AU* - .XU_). (7)

or

U-+ I = U i + (AU h - AUi). (8)

Here AU h and AU i denote the increments obtained by some high- and low-order scheme

respectively, whereas U t is the monotone, ripple-free solution at time t = t _+l of the

low-order scheme. The idea behind FCT is to limit the second term on the right-hand

side of eqn.(8):

[:.+I = U t + lim(AUh _ AUt), (9)

in such a way that no new over/undershoots are created.

It is at this point that a further constraint, given by the conservation law (1)
itself must be taken into account: strict conservation on the discrete level should be

maintained. The simplest way to guarantee this for node-centered schemes (and we

will only consider those here) is by constructing schemes for which the sum of the

contributions of each individual element (cell) to its surrounding nodes vanishes (_all

that comes in goes out'). This means that the limiting process (eqn.(9)) will have to

be carried out in the elements (cells).

Algorithmic Implementation

We can now define FCT in a quantitative way. We follow Zalesak's exposition [7].

but modify the term "flux' by "element contribution to a node'. Those more familiar

with finite volume or finite difference schemes should replace 'element' by "cell" in what
follows.

FCT consists of the following six algorithmic steps:

1) Compute LEC: the "low-order element contribution' from some low-order scheme

guaranteed to give monotonic results for the problem at hand:

3



2) Compute HEC: the 'high-order element contribution', given by some high-order
scheme:

3) Define AEC: the 'antidiffusive element contributions' :

AEC = HEC- LEC

4) Compute the updated low-order solution :

If _ = U" + _., LEC = U" + AU i (10)
el

5) Limit or 'correct' the AF.,C so that//,+1 as computed in step 6 below is free of
extrc.ma not also found in U _ or U" :

AECY = Cel ,, AEC, 0 < Cel <_ 1: (11)

6) Apply the limited AEC :

U"+s = UI + E AEC_"
el

(12)

The.Limiting Procedure

Obviously, the whole approach depends critically on the all-important step 5 above.

We define the following quantities:

a) P_: the sum of all positive (negative) antidiffusive element contributions to node I

b) Q_: the maximum (minimum) increment (decrement) node I is allowed to achieve

in step 6 above
_dtz

= uf.- - u'

¢_tQ8

where UI"'" (defined below) represents the maximum (minimum) value the un-
known U at node I is allowed to achieve in step 6 above.

c) R*:

R ±:=_vain(1,Q+/P +) if P+ >0, P-<0
t 0 if P±=O

Now take, for each element:



i

R if AEC>0.Cel = rain(element nodes) R- if AEC < O. (13)

_taz

Finally. we obtain 17"'"in three steps :

a) maximum (minimum) nodal U of U" and t "l :

_max'_trri rrn

t7 .

b) maximum (minimum) nodal value of element :

trTi= {max_ ....min _(_ a._ S ..... U_) .

where A. B ..... C represent the nodes of element el.

c) maximum (minimum) U of all elements surrounding node I :

"'# = _maz}UF'" train (U;,U', ..... UT.)

where 1.2 ..... m represent the elements surrounding node I.

This completes the description of the limiting procedure. Up to this point we have

been completely general in our description, so that eqns.(6)-(13) may be applied to

any FEM-FCT scheme. In what follows, we restrict the exposition to the finite element

schemes employed in the present work. describing the high and low-order schemes used.

The High-Order Sche.me: (_onsistent-Mas.s Taylor Galerkin

As the high-order scheme, we employ a two-step form [18-20] of the one-step Taylor-

Galerkin schemes described in [16,17]. These schemes belong to the Lax-Wendroff

class, and could be substituted by any other high-order scheme which appears more

convenient, including implicit schemes. Given the system of equations (1), we advance
the solution from t" to t _+_ = t _ + At as follows:

a) First step (advectiv.e predictor):

u"+;= u" - . °r; l"
2 Oz_l

(14)

b) Second step :

or;l-
at- = v "+_ - u" = -at Oz, [ + At -_-_xjl (15)
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The spatial discretization of (14) and (15) is performed via the classic Galerkin

weighted residual method [18-20], using linear elements, i.e. 3-noded triangles in 2-D

and 4-noded tetrahedra in 3-D. For (15) the following system of equations is obtained:

Mc . AU" = R". (16)

where Mc denotes the consistent mass matrix [18-20], AU the vector of nodal incre-

ments and R the vector of added element contributions to the nodes. As Mc possesses

an excellent condition number, eqn.(16) is never solved directly, but iteratively, requir-

ing typically three passes [17]. We recast the converged solution of eqn.(16) into the

following form, which will be of use later on :

ML. AU* = R + (Mr - Mc). AU h.

Here Mt denotes the diagonal, lumped mas,_matrix (see [1_).

(17)

The.. I,,ow-Ordet" ,Scheme: Lump_l-Mass Taylor Galerkin Dim Diffusion

The reCp.lirement pla¢_ on the iow-arck, r scheme in any FCT-method is mono-

tonicity. The low-order scheme must not produce any artificial, or numerical, 'ripples'

or 'wiggles'. It is clear that the better the low-order scheme, the easier the resulting

task of limiting will be. Therefore an obvious candidate for the low-order scheme is

Godunov's method [15]. However, this scheme would be relatively expensive, and its

extension to unstructured grids remains unclear.

We have so far added 'mass-diffusion' to the lumped-mass Taylor-Galerkin scheme

in the context of FEM-FCT [13,14]. This simplest and least expensive form of diffusion

is obtained by subtracting the lumped mass-matrix from the consistent mass-matrix
for linear elements:

DIFF = cd • (blc - Mr). U _.

The element matrix thus obtained for 2-D triangles is of the form

cd" (Mc - Mt),l = cd" Volel -1 2 -1
12

-1 -1 2

(18)

(19)

Observe that we cannot simply add this diffusion to the high-order scheme in order

to obtain monotonic results, as a multipoint-coupling of the right-hand side occurs due

to the consistent mass-matrix employed in the high-order scheme. The imposition of

monotonicity can nevertheless be achieved by using a lumped mass-matrix instead. As

the terms originating from the discretization of the fluxes F _ in (1) are the same as in

(15), the low-order scheme is given by

ML • AU I -- R + DIFF. (20)

l •



i R.e,suhing An_tidiffusive Element Contributions

Subtracting (20) from (17) yields the equation

,'ill • ('-_l, :h - "kU I) = R + (,'t[L -- 3Ic) • _U h - R - DIFF,

or. using eqn.(18)

(21)

,l_U h -- AU t = ,11_-1 • (-lit - Me). (cd" U" + AUh). (22)

Note that all terms arising from the discretization of the fluxes F i in (1),(15),(20)

have now disappeared. This is of particular importance if the antidiffusive element

contributions must be recomputed (small core memory machines), and real gas effects

are taken into account (table look-up times are considerable) or real viscosity effects

have to be included (Navier-Stokes equations).

Limitinf for Systems of Equations

The results available in the literature [8-10] and our own experience [13,14] have
shown that with FCT results of excellent quality can be obtained for a single PDE.

However, when trying to extend the limiting process to systems of PDEs. no imme-

diately obvious or natural limiting procedure becomes apparent. Ol:,,iously, for 1-D

problems one could advect each simple wave system separately, and then assemble the

.¢_lution at the new time step. However. for multidimensional problems such a splitting

is not possible, as the acoustic waves are circular. FDM-FCT-codes used for production

runs [21,22] have so far limited each equation separately, invoking operator-splitting

arguments. This approach does not always give very good results, as may be seen from

Sod's comparison of schemes for the Riemann problem [23], and has been a point of

continuing criticism by those who prefer to use the more costly Riemann-solver-based,

essentially one-dimensional TVD-schemes [1-6]. It would therefore appear as attrac-

tive to introduce "system character' for the limiter by combining the limiters for all

equations of the system. Many variations are possible and can be implemented, giving

different performance for different problems. We just list some of the possibilities here,

commenting on them where empirical experience is available.

a) Independent treatment of each equation as in operator-split FCT: this is the least dif-

fusive method, tending to produce an excessive am:,mt of ripples in the non-conserved

quantities (and ultimately also in the conserved quam ities).

b) Use of the same limiter (Cet) for all equations: this produces much better results,

seemingly because the phase errors for all equations are "synchronized'. This was also

observed by Harten and Zwa_s [24] and Zhmakin and Fursenko [2.5] for a class of

schemes very similar to FCT. We mention the following possibilities:

i) Use of a certain variable as 'indicator variable' (e.g. density, pressure, entropy).

ii) Use of the minimum of the limiters obtained for the density and the energy

(Cet = min(Cet(density),Cet(energy))) : this produces acceptable results, although



some undershoots for very strong shocks are present. This option is currently our

preferred choice for transient problems.

iii) Use of the minimum of the limiters obtained for the density and the pressure

(C_t = min(C,t(density),C,t(pressur_))) : this again produces acceptable results,

particularly for steady-state problems.

NUMERICAL EXAMPLES

a_ Shock over an indent a.tion: The first problem considered simulates the transient

flowtield produced by the interaction of a strong shock with an indentation in the

ground. For this case, the shock Mach number was set to M, = 25, which corresponds

to a pressure-jump ratio of about 1:100. During the transient, pressure ratios as high

as 1:1000 result. The problem statement, solution domain, spatial discretization and

solutions obtained are shown in Figs.la-le. Note that an adaptive refinement scheme for

transient problems [26] was used to reduce the overall storage and CPU requirements.

As the shock travels over the indentation, it produces a bow shock and a rar-

efaction (Figs.la,lb). Then. it collides with the right wall of the indentation and

bounces back. producing several shock/shock and shock/contact discontinuity interac-

tions (Figs.lc,ld). Observe the level of physically relevant det_ail that the scheme is

able to reproduce, e.g. the triple shock produced at T=0.12 (Figs.ld,le). The veloc-

ity pattern generated by these interactions has been magnified in Fig.le, and shows a

large residual vortex, as well as the different shock fronts and other discontinuities. We

remark that at all times the shocks are captured within 2 to 3 elements.

In the present case, we used as limiter for all equations the minimum of the limiters

computed for the continuity and energy equations. It is found, that for the strong shocks

present in such flowfields, even a pressure-undershoot of 0.1% will lead to negative

pressures. Therefore, the pressure is additionally limited artificially in order to be

positive (albeit small) at all times.

b) Steady supersonic flow past a circular cylinder: This problem involves inviscid

Math 3 flow past a circular cylinder. The solution has been obtained by relaxing,

with local timesteps, the transient solution towards the final steady-state. During this

iteration process, the grid was adapted three times to the solution by using an adap-

tive mesh regeneration technique [27]. The final grid is shown in Fig.2a. A detail of

the pressure coefficient distribution is shown in Fig.2b, and the variation of pressure

coefficient along the centre line and over the cylinder surface is given in Fig.2c.

c) Shock-bubble inter.ac.tion; This problem is included here to demonstrate a new ax-

isymmetric capability, and also to show that not only geometrically complex domains.

but also physically complex problems can be handled economically by the methodolo-

gies developed. Initially, a weak shock (M, = 1.29), coming from the left in Fig.3a.

travels into a bubble of heavier material. In the present case, the outer medium was

assumed to be air, while the bubble was assumed to consist of freon. Due to the higher

density of freon, the shock speed inside the bubble decreases (Fig.3b). While the outer

8
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shock bends over. the inner shock focuses at the right end of the bubble, producing a

significant overpressure (Fig.3c). and initiating a small, circular blast wave (Fig.3d).

d) Steady suoersonic flow over a flat olate: The fourth problem considered is the

steady state solution of supersonic viscous flow over a flat plate. The flow condi-

tions correspond identically to one of the cases considered by Carter [28]. using a finite

difference scheme. The free stream Math number is 3 and the Reynolds number based

on the plate length is 1000. The temperature of the plate is assumed constant. The

Sutherland viscosity law (see, e.g. Schlichting [29]) is used and the initial conditions

are chosen to be appropriate to the case of a flat plate impulsively inserted into the free,

stream. The mesh used is displaved in Fig.4a, and the general features of the solution

can be appreciated in the density contour plots shown in Fig.4b. The variation of the

computed wall pressure distribution is given in Fig.4c.

CONCLUSIONS

It has been demonstrated how unstructured grids and high resolution schemes

may be combined, yielding FEM-FCT. The numerical examples indicate that a high

accuracy, can be obtained economically for problems involving complex domains and/or

adaptive mesh refinement. Furthermore, the 'equation-splitting' employed in classic

FCT-codes [21,22] has been extended by coupling or 'synchronizing' the limiters of all

the equations involved, without taking recourse to more costly Riemann-solver-based
monotone schemes.

Extensions of the present work are under investigation and involve the development

of better limiters for systems of equations in the context of FEM-FCT, the extension of

FEM-FCT to implicit or semi-implicit time-stepping schemes [3!], and the combination

of FEM-FCT with unstructured multigrid methods [32] for the rapid solution of steady

state problems.
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b) Pressure coefficient distribution

Steady supersonic flow past a cylinder
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Fi_ure 2: Steady supersonic flow past a cylinder

c) Variation of the pressure coefficient along the center line and over
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